Abstract
The asymptotic chi-square test for testing the Hardy-Weinberg law is unreliable in either small or unbalanced samples. As an alternative, either the unconditional or conditional exact test might be used. It is known that the unconditional exact test has greater power than the conditional exact test in small samples. In this article, we show that the conditional exact test is more powerful than the unconditional exact test in large samples. This result is useful in extremely unbalanced cases with large sample sizes which are often obtained when a rare allele exists.
Original language | English |
---|---|
Pages (from-to) | 14-24 |
Number of pages | 11 |
Journal | Communications in Statistics: Simulation and Computation |
Volume | 37 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2008 Jan |
Bibliographical note
Funding Information:This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-070-C00021).
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modelling and Simulation