Abstract
We have proposed a new frequency difference method using a weighted voltage difference (WFD-EIT) between two frequencies [1, 2]. Previous studies demonstrated its feasibility through numerical experiments and two-dimensional phantom experiments. In this study, we validate the WFD-EIT algorithm on a three-dimensional hemisphere phantom using a multi-frequency EIT system KHU Mark1. We built the hemisphere phantom with 17 stainless-steel electrodes on its inner surface. We filled the phantom with a biological material having a frequency-dependent admittivity such as carrot pieces mixed in saline. Using boundary voltage data from the deformed phantom, we reconstructed weighted frequency difference images on the computational model domain with a hemisphere shape. We discuss comparative reconstruction performance results including time difference (TD), simple frequency difference (FD), and weighted frequency difference (WFD). Animal and human head imaging experiments with the weighted frequency-difference EIT method are under investigation.
Original language | English |
---|---|
Article number | 012059 |
Journal | Journal of Physics: Conference Series |
Volume | 224 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2010 |
Event | 14th International Conference on Electrical Bioimpedance, Held in Conjunction with the 11th Conference on Biomedical Applications of EIT, ICEBI and EIT 2010 - Gainesville, FL, United States Duration: 2010 Apr 4 → 2010 Apr 8 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy