Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell

Jungrak Choi, Donguk Kwon, Byeongsu Kim, Kyungnam Kang, Jimin Gu, Jihwan Jo, Kwangmin Na, Junseong Ahn, Dionisio Del Orbe, Kyuyoung Kim, Jaeho Park, Jongmin Shim, Jung Yong Lee, Inkyu Park

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

There is a great demand for the development of self-powered physical sensors for wearable applications in recent years. However, it is still challenging to achieve self-powered sensors with a high stability, accuracy, and linearity. Here, a novel wearable self-powered pressure sensor based on the integration of a piezo-transmittance microporous elastomer (PTME) and a thin-film organic solar cell (OSC) is proposed. In contrast to the sensors based on other mechanisms such as piezoelectricity or triboelectricity, the proposed self-powered pressure sensor is cable of measuring static pressure continuously and stably, and utilizes the ambient light as the power source regardless of its intensity. The PTME shows the light transmittance changes by a gradual closure of micropores with compression in response to the applied pressure. This unique optical characteristics of the PTME enables the OSC to generate varying electrical current in response to the pressure. The proposed self-powered pressure sensor shows a high-performance with a sensitivity of 0.101/kPa, a linearity of R2 = 0.995, and fast and reversible response to the pressure up to ~100 kPa. As practical applications of the proposed sensor, a detection of flexion/extension of a human finger for the manipulation of a prosthetic robot finger and a wind detection for the continuous monitoring of the wind speed and direction have been demonstrated.

Original languageEnglish
Article number104749
JournalNano Energy
Volume74
DOIs
Publication statusPublished - 2020 Aug

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Ltd

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell'. Together they form a unique fingerprint.

Cite this