TY - JOUR
T1 - Viability and Enzymatic Activity of Cryopreserved Porcine Heart Valve
AU - Suh, Hwal
AU - Lee, Jong Eun
AU - Park, Jong Chul
AU - Han, Dong Wook
AU - Yoon, Chee Soon
AU - Park, Young Hwan
AU - Cho, Bum Koo
PY - 1999/4
Y1 - 1999/4
N2 - Fibroblast viability of a natural tissue valve for replacing a defective heart valve through allograft or xenograft has been suggested to affect its clinical durability. In this study, the cell viability and enzymatic activity of porcine heart valve leaflets were examined in regard to concerning to the preservation process [variable warm ischemic time (WIT), cold ischemic time (CIT), and cryopreservation]. Porcine heart enblocs were obtained and valve dissection was performed after 2, 12, 24, or 36 hours, in respective groups A, B, C, and D, as WIT. Each group was stored for 24 hours as CIT and cryopreserved. Leaflets were dissected from a valved conduit after each process, and cell viability and enzymatic activity in the leaflet were investigated using trypan blue staining and API ZYM kits. WIT extension significantly decreased fibroblast viability (p<0.05, 92.25±2.7% at 2 hours, 84.9±6.7% at 12 hours, 57.0±10.2% at 24 hours, 55.9±7.9% at 36 hours), while CIT for 24 hours was also influenced significantly (p<0.05), whereas cryopreservation demonstrated no effect on cellular viability. In enzyme activity observation, several enzymes related to lipid or nucleotide degradation (esterase, esterase lipase, particularly phosphatase, phosphohydrolase) were remarkably changed following the valve-fabrication process. After 24 hours CIT, these enzymatic activities in groups B, C and D significantly increased, but the activities decreased after cryopreservation. Particularly, both the viability and enzymatic activity showed remarkable changes after CIT in group B (WIT=12 hours). These results suggest that WIT is more important than CIT in maintaining viability of the valve, and that completing all the cryopreservation process within 12 hours after acquisition is recommended.
AB - Fibroblast viability of a natural tissue valve for replacing a defective heart valve through allograft or xenograft has been suggested to affect its clinical durability. In this study, the cell viability and enzymatic activity of porcine heart valve leaflets were examined in regard to concerning to the preservation process [variable warm ischemic time (WIT), cold ischemic time (CIT), and cryopreservation]. Porcine heart enblocs were obtained and valve dissection was performed after 2, 12, 24, or 36 hours, in respective groups A, B, C, and D, as WIT. Each group was stored for 24 hours as CIT and cryopreserved. Leaflets were dissected from a valved conduit after each process, and cell viability and enzymatic activity in the leaflet were investigated using trypan blue staining and API ZYM kits. WIT extension significantly decreased fibroblast viability (p<0.05, 92.25±2.7% at 2 hours, 84.9±6.7% at 12 hours, 57.0±10.2% at 24 hours, 55.9±7.9% at 36 hours), while CIT for 24 hours was also influenced significantly (p<0.05), whereas cryopreservation demonstrated no effect on cellular viability. In enzyme activity observation, several enzymes related to lipid or nucleotide degradation (esterase, esterase lipase, particularly phosphatase, phosphohydrolase) were remarkably changed following the valve-fabrication process. After 24 hours CIT, these enzymatic activities in groups B, C and D significantly increased, but the activities decreased after cryopreservation. Particularly, both the viability and enzymatic activity showed remarkable changes after CIT in group B (WIT=12 hours). These results suggest that WIT is more important than CIT in maintaining viability of the valve, and that completing all the cryopreservation process within 12 hours after acquisition is recommended.
UR - http://www.scopus.com/inward/record.url?scp=0033112975&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033112975&partnerID=8YFLogxK
U2 - 10.3349/ymj.1999.40.2.184
DO - 10.3349/ymj.1999.40.2.184
M3 - Article
C2 - 10333724
AN - SCOPUS:0033112975
SN - 0513-5796
VL - 40
SP - 184
EP - 190
JO - Yonsei medical journal
JF - Yonsei medical journal
IS - 2
ER -