Unsupervised Stereo Matching Using Confidential Correspondence Consistency

Sunghun Joung, Seungryong Kim, Kihong Park, Kwanghoon Sohn

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Stereo matching aims to perceive the 3D geometric configuration of scenes and facilitates a variety of computer vision in advanced driver assistance systems (ADAS) applications. Recently, deep convolutional neural networks (CNNs) have shown dramatic performance improvements for computing the matching cost in the stereo matching. However, the performance of CNN-based approaches relies heavily on datasets, requiring a large number of ground truth data which needs tremendous works. To overcome this limitation, we present a novel framework to learn CNNs for matching cost computation in an unsupervised manner. Our method leverages an image domain learning combined with stereo epipolar constraints. By exploiting the correspondence consistency between stereo images, our method selects putative positive samples in each training iteration and utilizes them to train the networks. We further propose a positive sample propagation scheme to leverage additional training samples. Our unsupervised learning method is evaluated with two kinds of network architectures, simple and precise CNNs, and shows comparable performance to that of the state-of-the-art methods including both supervised and unsupervised learning approaches on KITTI, Middlebury, HCI, and Yonsei datasets. This extensive evaluation demonstrates that the proposed learning framework can be applied to deal with various real driving conditions.

Original languageEnglish
Article number8721668
Pages (from-to)2190-2203
Number of pages14
JournalIEEE Transactions on Intelligent Transportation Systems
Volume21
Issue number5
DOIs
Publication statusPublished - 2020 May 1

Bibliographical note

Funding Information:
Manuscript received June 4, 2018; revised February 11, 2019; accepted April 30, 2019. Date of publication May 24, 2019; date of current version May 1, 2020. This research was supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017M3C4A7069370). The Associate Editor for this paper was H. Huang. (Corresponding author: Kwanghoon Sohn.) S. Joung, K. Park, and K. Sohn are with the School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea (e-mail: sunghunjoung@yonsei.ac.kr; khpark7727@yonsei.ac.kr; khsohn@yonsei.ac.kr).

Publisher Copyright:
© 2000-2011 IEEE.

All Science Journal Classification (ASJC) codes

  • Automotive Engineering
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Unsupervised Stereo Matching Using Confidential Correspondence Consistency'. Together they form a unique fingerprint.

Cite this