Unraveling the regulation of a polyhydroxy electrolyte additive for a reversible, dendrite-free zinc anode

Cong Wang, Junming Hou, Yaping Gan, Lei Xie, Yi He, Qiang Hu, Shude Liu, Seong Chan Jun

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Rechargeable aqueous Zn-ion batteries (AZIBs) are a promising candidate for electrochemical energy storage applications. However, the practical lifespan of AZIBs is severely compromised due to dendritic growth, hydrogen evolution, and corrosion of the Zn anode. Herein, we employ cost-effective, polyhydroxy sucrose (Suc) as a multifunctional electrolyte additive for AZIBs, which highly suppresses dendrites and parasitic side reactions of the Zn anode, thereby promoting even Zn plating/stripping for prolonged cycle lifespan. Combining experimental characterization and theoretical calculations, we find that the rich hydroxyl groups in Suc effectively regulate the solvation structure of hydrated Zn2+ and the Zn metal/electrolyte interface, inhibit the cracking of active water molecules and homogenize the interfacial electric fields. These superiorities effectively suppress parasitic reactions and Zn corrosion and promote uniform Zn nucleation during cycling, as evidenced by in situ optical microscopy. As a result, Zn//Zn symmetrical cells using a ZnSO4 electrolyte containing Suc deliver ultrahigh cycling stability (over 2000 h at 1 mA cm−2 with 1 mA h cm−2), far superior to that using pure ZnSO4 electrolyte. When coupled with a V2O5 cathode, the as-assembled Zn//V2O5 can afford a high capacity retention of 81.3% after 2000 cycles.

Original languageEnglish
Pages (from-to)8057-8065
Number of pages9
JournalJournal of Materials Chemistry A
Volume11
Issue number15
DOIs
Publication statusPublished - 2023 Mar 2

Bibliographical note

Publisher Copyright:
© 2023 The Royal Society of Chemistry.

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'Unraveling the regulation of a polyhydroxy electrolyte additive for a reversible, dendrite-free zinc anode'. Together they form a unique fingerprint.

Cite this