TY - JOUR
T1 - Unconventional Pore and Defect Generation in Molybdenum Disulfide
T2 - Application in High-Rate Lithium-Ion Batteries and the Hydrogen Evolution Reaction
AU - Zhang, Kan
AU - Kim, Hwan Jin
AU - Lee, Jeong Taik
AU - Chang, Gee Woo
AU - Shi, Xinjian
AU - Kim, Wanjung
AU - Ma, Ming
AU - Kong, Ki Jeong
AU - Choi, Jae Man
AU - Song, Min Sang
AU - Park, Jong Hyeok
N1 - Publisher Copyright:
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2014/9
Y1 - 2014/9
N2 - A 2H-MoS2(H=hexagonal) ultrathin nanomesh with high defect generation and large porosity is demonstrated to improving electrochemical performance, including in lithium-ion batteries (LIBs) and the hydrogen evolution reaction (HER), with the aid of a 3D reduced graphene oxide (RGO) scaffold as fast electron and ion channels. The 3D defect-rich MoS2nanomesh/RGO foam (Dr-MoS2Nm/RGO) can be easily obtained through a one-pot cobalt acetate/graphene oxide (GO) co-assisted hydrothermal reaction, in which GO, cobalt and acetate ions are co-morphology-controlling agents and defect inducers. As an anode material for LIBs, Dr-MoS2Nm/RGO has only a 9 % capacity decay at a 10 C discharge rate versus 0.2 C with stable cyclability at the optimized composition (5 wt % RGO to MoS2and 2 mol % Co to Mo), and significantly achieves 810 mA h g−1at a high current density of 9.46 A g−1over at least 150 cycles. Moreover, Dr-MoS2Nm/RGO exhibits superior activity for the HER with an overpotential as low as 80 mV and a Tafel slope of about 36 mV per decade. In contrast to the MoS2nanosheet/RGO (MoS2Ns/RGO), which is synthesized in the absence of cobalt ions, Dr-MoS2Nm/RGO provides high interconnectivity for efficient lithium-ion transport, and rich defects as electrochemically active sites. DFT is used to prove the existence of rich defects due to anion replacement to become a CoMoS atomic structure, releasing inert basal planes to active sites.
AB - A 2H-MoS2(H=hexagonal) ultrathin nanomesh with high defect generation and large porosity is demonstrated to improving electrochemical performance, including in lithium-ion batteries (LIBs) and the hydrogen evolution reaction (HER), with the aid of a 3D reduced graphene oxide (RGO) scaffold as fast electron and ion channels. The 3D defect-rich MoS2nanomesh/RGO foam (Dr-MoS2Nm/RGO) can be easily obtained through a one-pot cobalt acetate/graphene oxide (GO) co-assisted hydrothermal reaction, in which GO, cobalt and acetate ions are co-morphology-controlling agents and defect inducers. As an anode material for LIBs, Dr-MoS2Nm/RGO has only a 9 % capacity decay at a 10 C discharge rate versus 0.2 C with stable cyclability at the optimized composition (5 wt % RGO to MoS2and 2 mol % Co to Mo), and significantly achieves 810 mA h g−1at a high current density of 9.46 A g−1over at least 150 cycles. Moreover, Dr-MoS2Nm/RGO exhibits superior activity for the HER with an overpotential as low as 80 mV and a Tafel slope of about 36 mV per decade. In contrast to the MoS2nanosheet/RGO (MoS2Ns/RGO), which is synthesized in the absence of cobalt ions, Dr-MoS2Nm/RGO provides high interconnectivity for efficient lithium-ion transport, and rich defects as electrochemically active sites. DFT is used to prove the existence of rich defects due to anion replacement to become a CoMoS atomic structure, releasing inert basal planes to active sites.
UR - http://www.scopus.com/inward/record.url?scp=85006511384&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85006511384&partnerID=8YFLogxK
U2 - 10.1002/cssc.201402372
DO - 10.1002/cssc.201402372
M3 - Article
AN - SCOPUS:85006511384
SN - 1864-5631
VL - 7
SP - 2489
EP - 2495
JO - ChemSusChem
JF - ChemSusChem
IS - 9
ER -