Abstract
In this study, reduced graphene oxide (rGO) and graphene oxide nanoribbons (GONRs) are used to fabricate a composite membrane that exhibits ultrafast water permeance (312.8 L m-2 h-1 bar-1) and precise molecular separation (molecular weight cutoff: 269 Da), which surpass the upper bound of previously reported polymer and graphene-based nanofiltration membranes. As two-dimensional GONR exhibits a width on the scale of nanometers, its nanochannels can be enlarged without hindering the stacking of rGO. Moreover, abundant oxygen-containing groups on the edge and surface of GONR enhance the electrostatic interactions between the filtered molecules and the membrane nanochannel. By the synergistic effect, rejection and water flux are considerably increased. Owing to the chemically stable nature of rGO, the composite membrane is highly stable in aqueous media (from acidic to alkaline) and is recyclable during repeated filtration tests.
Original language | English |
---|---|
Pages (from-to) | 27004-27010 |
Number of pages | 7 |
Journal | ACS Applied Materials and Interfaces |
Volume | 11 |
Issue number | 30 |
DOIs | |
Publication status | Published - 2019 Jul 31 |
Bibliographical note
Funding Information:This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1A6A3A04057367) and also funded by a National Research Foundation of Korea (2018R1A2B3008658). K.M.C. was supported by the Basic Science Research Program through the NRF (2018R1A6A3A01012374).
Publisher Copyright:
© 2019 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Materials Science(all)