Ultra-thin oxide films for band engineering: Design principles and numerical experiments

Keith T. Butler, Aron Walsh

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The alignment of band energies between conductive oxides and semiconductors is crucial for the further development of oxide contacting layers in electronic devices. The growth of ultra thin films on the surface of an oxide material can be used to introduce a dipole moment at that surface due to charge differences. The dipole, in turn, alters the electrostatic potential - and hence the band energies - in the substrate oxide. We demonstrate the fundamental limits for the application of thin-films in this context, applying analytical and numerical simulations, that bridge continuum and atomistic. The simulations highlight the different parameters that can affect the band energy shifting potential of a given thin-film layer, taking the examples of MgO and SnO2. In particular we assess the effect of formal charge, layer orientation, layer thickness and surface coverage, with respect to their effect on the electrostatic potential. The results establish some design principles, important for further development and application of thin-films for band energy engineering in transparent conductive oxide materials.

Original languageEnglish
Pages (from-to)64-68
Number of pages5
JournalThin Solid Films
Publication statusPublished - 2014 May 30

Bibliographical note

Funding Information:
We acknowledge A. A. Sokol and J. H. Harding for useful discussions. The work was funded by EPSRC (Grant Nos. EP/F067496 and EP/J017361/1 ) through the HPC Materials Chemistry Consortium and the SUPERSOLAR Hub.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry


Dive into the research topics of 'Ultra-thin oxide films for band engineering: Design principles and numerical experiments'. Together they form a unique fingerprint.

Cite this