Abstract
This paper investigates a cellular edge caching design under an extremely large number of small base stations (SBSs) and users. In this ultra-dense edge caching network (UDCN), SBS-user distances shrink, and each user can request a cached content from multiple SBSs. Unfortunately, the complexity of existing caching controls' mechanisms increases with the number of SBSs, making them inapphcable for solving the fundamental caching problem: How to maximize local caching gain while minimizing the replicated content caching? Furthermore, spatial dynamics of interference is no longer negligible in UDCNs due to the surge in interference. In addition, the caching control should consider temporal dynamics of user demands. To overcome such difficulties, we propose a novel caching algorithm weaving together notions of mean-field game theory and stochastic geometry. These enable our caching algorithm to become independent of the number of SBSs and users, while incorporating spatial interference dynamics as well as temporal dynamics of content popularity and storage constraints. Numerical evaluation validates the fact that the proposed algorithm reduces not only the long run average cost by at least 24% but also the number of replicated content by 56% compared to a popularity-based algorithm.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Conference on Communications, ICC 2017 |
Editors | Merouane Debbah, David Gesbert, Abdelhamid Mellouk |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781467389990 |
DOIs | |
Publication status | Published - 2017 Jul 28 |
Event | 2017 IEEE International Conference on Communications, ICC 2017 - Paris, France Duration: 2017 May 21 → 2017 May 25 |
Publication series
Name | IEEE International Conference on Communications |
---|---|
ISSN (Print) | 1550-3607 |
Other
Other | 2017 IEEE International Conference on Communications, ICC 2017 |
---|---|
Country/Territory | France |
City | Paris |
Period | 17/5/21 → 17/5/25 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Electrical and Electronic Engineering