Abstract
We propose a new method for the estimation of ultra-high energy cosmic ray (UHECR) mass composition from a distribution of their arrival directions. The method employs a test statistic (TS) based on a characteristic deflection of UHECR events with respect to the distribution of luminous matter in the local Universe modeled with a flux-weighed 2MRS catalog. Making realistic simulations of the mock UHECR sets, we show that this TS is robust to the presence of galactic and non-extreme extra-galactic magnetic fields and sensitive to the mass composition of events in a set. We apply the method to Telescope Array surface detector data for 11 years and derive new independent constraints on fraction of protons and iron in p-Fe mix at E > 10 EeV. At 10 < E < 100 EeV the data favors increase of allowed proton fraction and decrease of allowed iron fraction, while at E > 100 EeV — pure iron or even more massive composition. This result is in tension with Auger composition model inferred from spectrum–Xmax fit at 2.7σ (2.0σ) for PT’11 (JF’12) regular GMF model.
Original language | English |
---|---|
Article number | 294 |
Journal | Proceedings of Science |
Volume | 395 |
Publication status | Published - 2022 Mar 18 |
Event | 37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany Duration: 2021 Jul 12 → 2021 Jul 23 |
Bibliographical note
Publisher Copyright:© Copyright owned by the author(s).
All Science Journal Classification (ASJC) codes
- General