UHECR mass composition from anisotropy of their arrival directions with the Telescope Array SD

The Telescope Array Collaboration

Research output: Contribution to journalConference articlepeer-review

Abstract

We propose a new method for the estimation of ultra-high energy cosmic ray (UHECR) mass composition from a distribution of their arrival directions. The method employs a test statistic (TS) based on a characteristic deflection of UHECR events with respect to the distribution of luminous matter in the local Universe modeled with a flux-weighed 2MRS catalog. Making realistic simulations of the mock UHECR sets, we show that this TS is robust to the presence of galactic and non-extreme extra-galactic magnetic fields and sensitive to the mass composition of events in a set. We apply the method to Telescope Array surface detector data for 11 years and derive new independent constraints on fraction of protons and iron in p-Fe mix at E > 10 EeV. At 10 < E < 100 EeV the data favors increase of allowed proton fraction and decrease of allowed iron fraction, while at E > 100 EeV — pure iron or even more massive composition. This result is in tension with Auger composition model inferred from spectrum–Xmax fit at 2.7σ (2.0σ) for PT’11 (JF’12) regular GMF model.

Original languageEnglish
Article number294
JournalProceedings of Science
Volume395
Publication statusPublished - 2022 Mar 18
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: 2021 Jul 122021 Jul 23

Bibliographical note

Publisher Copyright:
© Copyright owned by the author(s).

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'UHECR mass composition from anisotropy of their arrival directions with the Telescope Array SD'. Together they form a unique fingerprint.

Cite this