Abstract
Hyaluronic acid (HA) is abundant in tumor microenvironment and closely associated with invasiveness of glioblastoma (GBM) cells. However, the cellular mechanism underlying HA-rich microenvironment in GBM remains unexplored. Here, we show that tumor-associated mesenchymal stem-like cells (tMSLCs) contribute to abundance of hyaluronic acid (HA) in tumor microenvironment through HA synthase-2 (HAS2) induction, and thereby enhances invasiveness of GBM cells. In an autocrine manner, C5a secreted by tMSLCs activated ERK MAPK for HAS2 induction in tMSLCs. Importantly, HA acted as a signaling ligand of its cognate receptor RHAMM for intracellular signaling activation underlying invasiveness of GBM cells. Taken together, our study suggests that tMSLCs contribute to HA-rich proinvasive ECM microenvironment in GBM.
Original language | English |
---|---|
Pages (from-to) | 1438-1448 |
Number of pages | 11 |
Journal | Oncotarget |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation (NRF) and Ministry of Science, ICT and Future Planning, Korean government, through its National Nuclear Technology Program (NRF-2012M2B2B1055639 and NRF-2015M2A2A7061626).
All Science Journal Classification (ASJC) codes
- Oncology