Tribodiffusion-driven triboelectric nanogenerators based on MoS2

Myeongjin Kim, Chang Jun Lee, Sung Hyun Kim, Myung Uk Park, Jaehyun Yang, Yeonjin Yi, Kyung Hwa Yoo

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Recently, dynamic Schottky diode or p-n junction-based triboelectric nanogenerators (TENGs) which generate direct current were reported. However, most of them exhibited low output voltage because their semiconducting friction layers were directly constructed on an electrode. In this study, we report a “tribodiffusion-driven” TENG, the working mechanism of which differs from previously reported ones. When n-type MoS2and p-type polypyrrole (PPy) are in contact, electrons and holes diffuse into PPy and MoS2, respectively, contributing to generating output voltages and currents. To increase the number of charges diffusing across the p-n junction, Ag nanoparticles (NPs) and a piezoelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer were placed below MoS2. Additionally, PPy was p-doped using Pt NPs. These MoS2-based TENGs exhibited an instantaneous power density of 14.4 mW cm−2with an external load resistor of 1 MΩ and a transferred charge density of 0.047 μC cm−2in a single cycle when charging a capacitor. These values are higher than the previously reported values, demonstrating that tribodiffusion-based TENGs can be regarded as another type of TENG.

Original languageEnglish
Pages (from-to)10316-10325
Number of pages10
JournalJournal of Materials Chemistry A
Issue number16
Publication statusPublished - 2021 Apr 28

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry 2021.

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science


Dive into the research topics of 'Tribodiffusion-driven triboelectric nanogenerators based on MoS2'. Together they form a unique fingerprint.

Cite this