Transparent Bendable Secondary Zinc-Air Batteries by Controlled Void Ionic Separators

Ohchan Kwon, Ho Jung Hwang, Yunseong Ji, Ok Sung Jeon, Jeong Pil Kim, Chanmin Lee, Yong Gun Shul

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

First ever transparent bendable secondary zinc-air batteries were fabricated. Transparent stainless-steel mesh was utilized as the current collector for the electrodes due to its reliable mechanical stability and electrical conductivity. After which separate methods were used to apply the active redox species. For the preparation of the anode, zinc was loaded by an electroplating process to the mesh. For the cathode, catalyst ink solution was spray coated with an airbrush for desired dimensions. An alkaline gel electrolyte layer was used for the electrolyte. Microscale domain control of the materials becomes a crucial factor for fabricating transparent batteries. As for the presented cell, anionic exchange polymer layer has been uniquely incorporated on to the cathode mesh as the separator which becomes a key procedure in the fabrication process for obtaining the desired optical properties of the battery. The ionic resin is applied in a fashion where controlled voids exist between the openings of the grid which facilitates light passage while guaranteeing electrical insulation between the electrodes. Further analysis correlates the electrode dimensions to the transparency of the system. Recorded average light transmittance is 48.8% in the visible light region and exhibited a maximum power density of 9.77 mW/cm 2 . The produced battery shows both transparent and flexible properties while maintaining a stable discharge/charge operation.

Original languageEnglish
Article number3175
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

Bibliographical note

Funding Information:
This research was supported by the Technology innovation industrial Program funded by the Ministry of Trade, Industry and energy (MOTIE), Republic of Korea (grant number 10052823). Additional funding was provided by the Ministry of Science, ICT, and Future Planning Technology through the Development Program to Solve Climate Changes of the National Research Foundation (NRF) (grant no. NRF-2015M1A2A2056833).

Publisher Copyright:
© 2019, The Author(s).

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Transparent Bendable Secondary Zinc-Air Batteries by Controlled Void Ionic Separators'. Together they form a unique fingerprint.

Cite this