Abstract
We report that an external electric field applied normal to bilayers of transition-metal dichalcogenides TX2(T = Mo, W, X = S, Se) creates significant spin-orbit splittings and reduces the electronic band gap linearly with the field strength. Contrary to the TX2monolayers, spin-orbit splittings and valley polarization are absent in bilayers due to the presence of inversion symmetry. This symmetry can be broken by an electric field, and the spin-orbit splittings in the valence band quickly reach values similar to those in the monolayers (145 meV for MoS2,..., 418 meV for WSe2) at saturation fields less than 500 mV Å-1. The band gap closure results in a semiconductor-metal transition at field strength between 1.25 (WX2) and 1.50 (MoX2) V Å-1. Thus, by using a gate voltage, the spin polarization can be switched on and off in TX2bilayers, thus activating them for spintronic and valleytronic applications.
Original language | English |
---|---|
Article number | 125440 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 90 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2014 Sept 22 |
Bibliographical note
Publisher Copyright:© 2014 American Physical Society.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics