Abstract
We propose an improved hole array to enhance the cooling performance of a perforated blockage. The internal passage in the trailing region of the blade was modeled as a wide square channel with three parallel blockages. Various configurations of perforated blockages were tested with a fixed Reynolds number. The baseline design had holes positioned along the centerline of the blockage in the lateral direction, and the array pattern, hole size, and hole direction were manipulated to enhance the cooling performance. Experiments were performed to obtain information on heat transfer and pressure loss. A naphthalene sublimation method was adopted to obtain detailed heat transfer distributions on the surfaces, using the correlation between heat and mass transfer. The pressure was measured at several points to evaluate the pressure loss. The proposed inclined hole array showed noticeably improved cooling performance, as much as 50% higher than the conventional configuration.
Original language | English |
---|---|
Title of host publication | ASME Turbo Expo 2013 |
Subtitle of host publication | Turbine Technical Conference and Exposition, GT 2013 |
DOIs | |
Publication status | Published - 2013 |
Event | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013 - San Antonio, Tx, United States Duration: 2013 Jun 3 → 2013 Jun 7 |
Publication series
Name | Proceedings of the ASME Turbo Expo |
---|---|
Volume | 3 |
Other
Other | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013 |
---|---|
Country/Territory | United States |
City | San Antonio, Tx |
Period | 13/6/3 → 13/6/7 |
Bibliographical note
Funding Information:This work was supported by the aerospace research program (KA00157) of Korea Aerospace Research Institute (KARI) and the human resources development program (No.20134030200200) of the Korean Institute of Energy Technology Evaluation and Planning (KETEP). Those programs are funded by the Korean government Ministry of Trade, Industry and Energy. This paper was originally presented at the ASME Turbo Expo 2013: Turbine technical conference and Exposition (GT2013-95445).
All Science Journal Classification (ASJC) codes
- Engineering(all)