TY - JOUR
T1 - Tractable Resource Management with Uplink Decoupled Millimeter-Wave Overlay in Ultra-Dense Cellular Networks
AU - Park, Jihong
AU - Kim, Seong Lyun
AU - Zander, Jens
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/6
Y1 - 2016/6
N2 - The forthcoming 5G cellular network is expected to overlay millimeter-wave (mmW) transmissions with the incumbent micro-wave (μW) architecture. The overall mm-μW resource management should, therefore, harmonize with each other. This paper aims at maximizing the overall downlink (DL) rate with a minimum uplink (UL) rate constraint, and concludes: mmW tends to focus more on DL transmissions while μW has high priority for complementing UL, under time-division duplex (TDD) mmW operations. Such UL dedication of μW results from the limited use of mmW UL bandwidth due to excessive power consumption and/or high peak-to-average power ratio (PAPR) at mobile users. To further relieve this UL bottleneck, we propose mmW UL decoupling that allows each legacy μW base station (BS) to receive mmW signals. Its impact on mm-μW resource management is provided in a tractable way by virtue of a novel closed-form mm-μW spectral efficiency (SE) derivation. In an ultra-dense cellular network (UDN), our derivation verifies mmW (or μW) SE is a logarithmic function of BS-to-user density ratio. This strikingly simple yet practically valid analysis is enabled by exploiting stochastic geometry in conjunction with real three-dimensional (3-D) building blockage statistics in Seoul, South Korea.
AB - The forthcoming 5G cellular network is expected to overlay millimeter-wave (mmW) transmissions with the incumbent micro-wave (μW) architecture. The overall mm-μW resource management should, therefore, harmonize with each other. This paper aims at maximizing the overall downlink (DL) rate with a minimum uplink (UL) rate constraint, and concludes: mmW tends to focus more on DL transmissions while μW has high priority for complementing UL, under time-division duplex (TDD) mmW operations. Such UL dedication of μW results from the limited use of mmW UL bandwidth due to excessive power consumption and/or high peak-to-average power ratio (PAPR) at mobile users. To further relieve this UL bottleneck, we propose mmW UL decoupling that allows each legacy μW base station (BS) to receive mmW signals. Its impact on mm-μW resource management is provided in a tractable way by virtue of a novel closed-form mm-μW spectral efficiency (SE) derivation. In an ultra-dense cellular network (UDN), our derivation verifies mmW (or μW) SE is a logarithmic function of BS-to-user density ratio. This strikingly simple yet practically valid analysis is enabled by exploiting stochastic geometry in conjunction with real three-dimensional (3-D) building blockage statistics in Seoul, South Korea.
KW - 3D blockage model
KW - Ultra-dense cellular networks
KW - heterogeneous cellular networks
KW - millimeter-wave
KW - radio resource management
KW - stochastic geometry
KW - time-division duplex
KW - uplink decoupling
UR - http://www.scopus.com/inward/record.url?scp=84976312644&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84976312644&partnerID=8YFLogxK
U2 - 10.1109/TWC.2016.2540626
DO - 10.1109/TWC.2016.2540626
M3 - Article
AN - SCOPUS:84976312644
SN - 1536-1276
VL - 15
SP - 4362
EP - 4379
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 6
M1 - 7430349
ER -