Abstract
The forthcoming 5G cellular network is expected to overlay millimeter-wave (mmW) transmissions with the incumbent micro-wave (μW) architecture. The overall mm-μW resource management should, therefore, harmonize with each other. This paper aims at maximizing the overall downlink (DL) rate with a minimum uplink (UL) rate constraint, and concludes: mmW tends to focus more on DL transmissions while μW has high priority for complementing UL, under time-division duplex (TDD) mmW operations. Such UL dedication of μW results from the limited use of mmW UL bandwidth due to excessive power consumption and/or high peak-to-average power ratio (PAPR) at mobile users. To further relieve this UL bottleneck, we propose mmW UL decoupling that allows each legacy μW base station (BS) to receive mmW signals. Its impact on mm-μW resource management is provided in a tractable way by virtue of a novel closed-form mm-μW spectral efficiency (SE) derivation. In an ultra-dense cellular network (UDN), our derivation verifies mmW (or μW) SE is a logarithmic function of BS-to-user density ratio. This strikingly simple yet practically valid analysis is enabled by exploiting stochastic geometry in conjunction with real three-dimensional (3-D) building blockage statistics in Seoul, South Korea.
Original language | English |
---|---|
Article number | 7430349 |
Pages (from-to) | 4362-4379 |
Number of pages | 18 |
Journal | IEEE Transactions on Wireless Communications |
Volume | 15 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2016 Jun |
Bibliographical note
Funding Information:This work was supported in part by the National Research Foundation of Korea (NRF-2014R1A2A1A11053234) and in part by the Communication Policy Research Center (CPRC) support program supervised by the Institute for Information and Communications Technology Promotion (IITP-2015-H8201-15-1003), funded by the Ministry of Science, ICT, and Future Planning of Korea.
Publisher Copyright:
© 2016 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Science Applications
- Electrical and Electronic Engineering
- Applied Mathematics