Abstract
A top-κ query retrieves the best κ tuples by assigning scores for each tuple in a target relation with respect to a user-specific scoring function. This paper studies the problem of constructing an indexing structure for supporting top-κ queries over varying scoring functions and retrieval sizes. The existing research efforts can be categorized into three approaches: list-, layer-, and view-based approaches. In this paper, we mainly focus on the layer-based approach that pre-materializes tuples into consecutive multiple layers. We first propose a dual-resolution layer that consists of coarse-level and fine-level layers. Specifically, we build coarse-level layers using skylines, and divide each coarse-level layer into fine-level sublayers using convex skylines. To make our proposed dual-resolution layer scalable, we then address the following optimization directions: 1) index construction; 2) disk-based storage scheme; 3) the design of the virtual layer; and 4) index maintenance for tuple updates. Our evaluation results show that our proposed method is more scalable than the state-of-the-art methods.
Original language | English |
---|---|
Article number | 6587712 |
Pages (from-to) | 3103-3116 |
Number of pages | 14 |
Journal | IEEE Transactions on Knowledge and Data Engineering |
Volume | 26 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2014 Dec 1 |
Bibliographical note
Publisher Copyright:© 1989-2012 IEEE.
All Science Journal Classification (ASJC) codes
- Information Systems
- Computer Science Applications
- Computational Theory and Mathematics