TY - JOUR
T1 - Toward Full Spectrum Speciation of Silver Nanoparticles and Ionic Silver by On-Line Coupling of Hollow Fiber Flow Field-Flow Fractionation and Minicolumn Concentration with Multiple Detectors
AU - Tan, Zhi Qiang
AU - Liu, Jing Fu
AU - Guo, Xiao Ru
AU - Yin, Yong Guang
AU - Byeon, Seul Kee
AU - Moon, Myeong Hee
AU - Jiang, Gui Bin
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/8/18
Y1 - 2015/8/18
N2 - The intertransformation of silver nanoparticles (AgNPs) and ionic silver (Ag(I)) in the environment determines their transport, uptake, and toxicity, demanding methods to simultaneously separate and quantify AgNPs and Ag(I). For the first time, hollow fiber flow field-flow fractionation (HF5) and minicolumn concentration were on-line coupled together with multiple detectors (including UV-vis spectrometry, dynamic light scattering, and inductively coupled plasma mass spectrometry) for full spectrum separation, characterization, and quantification of various Ag(I) species (i.e., free Ag(I), weak and strong Ag(I) complexes) and differently sized AgNPs. While HF5 was employed for filtration and fractionation of AgNPs (>2 nm), the minicolumn packed with Amberlite IR120 resin functioned to trap free Ag(I) or weak Ag(I) complexes coming from the radial flow of HF5 together with the strong Ag(I) complexes and tiny AgNPs (<2 nm), which were further discriminated in a second run of focusing by oxidizing >90% of tiny AgNPs to free Ag(I) and trapped in the minicolumn. The excellent performance was verified by the good agreement of the characterization results of AgNPs determined by this method with that by transmission electron microscopy, and the satisfactory recoveries (70.7-108%) for seven Ag species, including Ag(I), the adduct of Ag(I) and cysteine, and five AgNPs with nominal diameters of 1.4 nm, 10 nm, 20 nm, 40 nm, and 60 nm in surface water samples.
AB - The intertransformation of silver nanoparticles (AgNPs) and ionic silver (Ag(I)) in the environment determines their transport, uptake, and toxicity, demanding methods to simultaneously separate and quantify AgNPs and Ag(I). For the first time, hollow fiber flow field-flow fractionation (HF5) and minicolumn concentration were on-line coupled together with multiple detectors (including UV-vis spectrometry, dynamic light scattering, and inductively coupled plasma mass spectrometry) for full spectrum separation, characterization, and quantification of various Ag(I) species (i.e., free Ag(I), weak and strong Ag(I) complexes) and differently sized AgNPs. While HF5 was employed for filtration and fractionation of AgNPs (>2 nm), the minicolumn packed with Amberlite IR120 resin functioned to trap free Ag(I) or weak Ag(I) complexes coming from the radial flow of HF5 together with the strong Ag(I) complexes and tiny AgNPs (<2 nm), which were further discriminated in a second run of focusing by oxidizing >90% of tiny AgNPs to free Ag(I) and trapped in the minicolumn. The excellent performance was verified by the good agreement of the characterization results of AgNPs determined by this method with that by transmission electron microscopy, and the satisfactory recoveries (70.7-108%) for seven Ag species, including Ag(I), the adduct of Ag(I) and cysteine, and five AgNPs with nominal diameters of 1.4 nm, 10 nm, 20 nm, 40 nm, and 60 nm in surface water samples.
UR - http://www.scopus.com/inward/record.url?scp=84939833111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939833111&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.5b01827
DO - 10.1021/acs.analchem.5b01827
M3 - Article
C2 - 26222150
AN - SCOPUS:84939833111
SN - 0003-2700
VL - 87
SP - 8441
EP - 8447
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 16
ER -