Abstract
We demonstrate the thickness-, morphology-, and defect-tunable growth and simultaneous integration of aligned carbon nanotube (CNT) arrays using a novel microscale platform. This platform consists of a micromechanical spring of desired stiffness, which applies a precise vertical load to a vertically aligned CNT array during its growth by chemical vapor deposition (CVD). The micromechanical spring is strained by the extrusive growth force output from the aligned CNT array during its growth and, at the same time, exerts a mechanical restoring force against the buckling resistance of the CNTs. This application of a designed vertical load on the CNTs allows modulation of the thickness and degree of alignment of the CNT array, as well as the structural quality of the individual CNTs. Consequently, the electrical resistance between two opposing CNT arrays can be tuned by adjusting the vertical load. In addition, their sensing responsiveness toward chemical species can also be enhanced by applying larger vertical load on the CNTs. In contrast to conventional growth methods for producing aligned CNT arrays, our approach offers an efficient way for the growth engineering and on-chip integration of aligned CNT arrays in a single step of the CVD.
Original language | English |
---|---|
Pages (from-to) | 126-133 |
Number of pages | 8 |
Journal | Carbon |
Volume | 66 |
DOIs | |
Publication status | Published - 2014 Jan |
Bibliographical note
Funding Information:This research was supported by the Smart IT Convergence System Research Center as Global Frontier Project ( 2011-0031870 ), the Converging Research Center Program ( 2012K001484 ), and the Fusion Research Program for Green Technologies ( 2010-0019088 ) of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology .
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)