Abstract
Abstract: We report the thermoelectric transport properties of interface-controlled p-type bismuth antimony telluride (BST) composites using reduced graphene oxide (rGO). The composites were prepared by the spark plasma sintering (SPS) of BST–graphene oxide (GO) hybrid powder, which could induce the in situ reduction of GO into rGO. Compared to the pristine BST, the interface-controlled BST composites exhibited degraded electrical conductivities with similar Seebeck coefficients, consequently resulting in decreased power factors. However, thanks to the suppressed lattice thermal conductivity by the rGO network at the grain boundaries, this disadvantage could be compensated in terms of ZT. Our results will be helpful for understanding thermoelectric transport properties of various graphene-hybrid thermoelectric materials. Graphical Abstract: [Figure not available: see fulltext.].
Original language | English |
---|---|
Pages (from-to) | 605-612 |
Number of pages | 8 |
Journal | Electronic Materials Letters |
Volume | 15 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2019 Sept 10 |
Bibliographical note
Publisher Copyright:© 2019, The Korean Institute of Metals and Materials.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials