The structural, optical and electrical characterization of high-performance, low-temperature and solution-processed alkali metal-doped ZnO TFTs

Si Yun Park, Kyongjun Kim, Keon Hee Lim, Beom Joon Kim, Eungkyu Lee, Jeong Ho Cho, Youn Sang Kim

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

The structural, electrical and optical properties of high-performance, low-temperature and solution-processed alkali metal-doped ZnO TFTs were studied using various analytic instruments, including HR-TEM, AFM, XPS, EDS, electrical bias stability test and UV-vis spectroscopy. Furthermore, we successfully demonstrated that a change in the optical bandgap energy of Li-doped ZnO semiconductor films supported by Burstein-Moss theory can show a trade-off relationship between the field effect mobility of Li-ZnO TFTs and the Li doping concentrations. The relative broadening of the Eopt values, which are strongly related to the amount of excited electrons from the Fermi level in the valance band to the conduction band, was observed from the undoped ZnO film to the Li-doped ZnO film (10 mol%). The increase in the electron donor concentration was the dominant reason for the enhancement in the electron mobility of the alkali metal-doped ZnO TFTs.

Original languageEnglish
Pages (from-to)1383-1391
Number of pages9
JournalJournal of Materials Chemistry C
Volume1
Issue number7
DOIs
Publication statusPublished - 2013 Feb 21

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'The structural, optical and electrical characterization of high-performance, low-temperature and solution-processed alkali metal-doped ZnO TFTs'. Together they form a unique fingerprint.

Cite this