The role of atomic hydrogen in Ge/Si core-shell nanowires

Jongseob Kim, Kyung Yeon Kim, Hyoung Joon Choi, Ki Ha Hong

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


We investigate the role of atomic hydrogen in Ge/Si core-shell nanowires with first-principles calculations and present that the hole doping in the Ge/Si heterointerface is achievable through interstitial hydrogen mediated remote doping. This atomic hydrogen induced hole doping could generate one-dimensional hole gas in Ge/Si core-shell nanowires. Hydrogen prefers to be incorporated in the Si shell due to the lattice strain effect. As the charge transition energy level of the interstitial hydrogen in Si is lower than the valence band maximum of the Ge band, the electrons in the Ge core prefer to move toward the Si shell and become trapped by the interstitial hydrogen. This unique hydrogen energy level in the Ge/Si heterostructure between the Ge and Si valence band edges drives the electron transfer from the Ge core and induces holes states in the Ge core through remote hole doping. We also perform a quantum transport simulation and show that a high conductive hole channel in the Ge core can be generated when hydrogen is incorporated into the Si shell. Our investigation on the role of atomic hydrogen in the Ge/Si core-shell nanowire opens the possibility of manipulating the hole concentration by tuning the process conditions.

Original languageEnglish
Pages (from-to)20710-20715
Number of pages6
JournalJournal of Physical Chemistry C
Issue number35
Publication statusPublished - 2014 Sept 4

Bibliographical note

Publisher Copyright:
© 2014 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'The role of atomic hydrogen in Ge/Si core-shell nanowires'. Together they form a unique fingerprint.

Cite this