Abstract
SiC crystal growth using the top seeded solution growth (TSSG) method involves the precipitation of solid SiC from carbon that is dissolved in a silicon melt. The growth rate of SiC is strongly influenced by the solubility of C in liquid Si, which is quite low. In this study, the dissolution of C from graphite to the Si melt was explored by observing the formation of an SiC interlayer at a graphite – Si liquid interface. The SiC interlayer was observed to become thickened during the several hours needed to reach a certain thickness at 1500 °C. Assuming that the SiC interlayer is a direct C source, a pre-formed SiC layer was coated on the graphite crucible to evaluate its effect on the concentration of C in the Si melt. As a result, the concentration of C in the Si melt increased within a short time, especially at low temperatures. By applying the SiC coated crucible to the TSSG process for SiC crystal growth, we confirmed that the development of a pre-formed SiC layer enhanced the growth rate of SiC crystals, especially at the initial stage of crystal growth at low temperatures.
Original language | English |
---|---|
Pages (from-to) | 11611-11618 |
Number of pages | 8 |
Journal | Ceramics International |
Volume | 42 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2016 Aug 1 |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd and Techna Group S.r.l.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry