The production of 6‐aminopenicillanic acid by a multistage tubular reactor packed with immobilized penicillin amidase

Jong M. Park, Cha Y. Choi, Baik L. Seong, Moon H. Han

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

A theoretical model equation was derived to find the correlation between the conversion and the amount of immobilized penicillin amidase in column. The theoretical values of the conversion were predicted form this correlation and compared with experimental results. It was observed in a column reactor that the pH drop along the column path was linear versus the enzyme loading and that the enzyme activity was also linearly dependent on pH up to 8.0. In order to diminish the effect of pH drop, a continuous two‐stage plug‐flow reactor (PFR) with pH adjustment between the two columns was used was used in the experiments, and two‐ and three‐stage PFRs were simulated by computer. In the case of the two‐stage PFR, the maximum productivity was demonstrated experimentally and theoretically as well. when an equal amount of the immobilized enzyme was packed in both columns. It was also predicted in the tree‐stage PFR system that the optimal distributions of enzyme loading in three columns were found to be 1:1:1. It was demonstrated that the increased number of reactors in series could enhance the level of the maximum productivity with a given amount of enzyme loading.

Original languageEnglish
Pages (from-to)1623-1637
Number of pages15
JournalBiotechnology and Bioengineering
Volume24
Issue number7
DOIs
Publication statusPublished - 1982 Jul

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'The production of 6‐aminopenicillanic acid by a multistage tubular reactor packed with immobilized penicillin amidase'. Together they form a unique fingerprint.

Cite this