THE PREFERENTIAL TIDAL STRIPPING of DARK MATTER VERSUS STARS in GALAXIES

Rory Smith, Hoseung Choi, Jaehyun Lee, Jinsu Rhee, Ruben Sanchez-Janssen, Sukyoung K. Yi

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

Using high-resolution hydrodynamical cosmological simulations, we conduct a comprehensive study of how tidal stripping removes dark matter and stars from galaxies. We find that dark matter is always stripped far more significantly than the stars - galaxies that lose ∼80% of their dark matter, typically lose only 10% of their stars. This is because the dark matter halo is initially much more extended than the stars. As such, we find that the stellar-to-halo size-ratio (measured using r eff/r vir) is a key parameter controlling the relative amounts of dark matter and stellar stripping. We use simple fitting formulae to measure the relation between the fraction of bound dark matter and the fraction of bound stars. We measure a negligible dependence on cluster mass or galaxy mass. Therefore, these formulae have general applicability in cosmological simulations, and are ideal to improve stellar stripping recipes in semi-analytical models, and/or to estimate the impact that tidal stripping would have on galaxies when only their halo mass evolution is known.

Original languageEnglish
Article number109
JournalAstrophysical Journal
Volume833
Issue number1
DOIs
Publication statusPublished - 2016 Dec 10

Bibliographical note

Funding Information:
R.S. acknowledges support from Brain Korea 21 Plus Program(21A20131500002) and the Doyak Grant(2014003730). S.K.Y. acknowledges support from the National Research Foundation of Korea (Doyak grant 2014003730). S. K.Y., the head of the group, acted as a corresponding author. Numerical simulations were performed using the KISTI supercomputer, under the program of KSC-2014-G2-003

Publisher Copyright:
© 2016. The American Astronomical Society. All rights reserved..

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'THE PREFERENTIAL TIDAL STRIPPING of DARK MATTER VERSUS STARS in GALAXIES'. Together they form a unique fingerprint.

Cite this