TY - JOUR
T1 - The modulation of neurotrophin and epigenetic regulators
T2 - Implication for astrocyte proliferation and neuronal cell apoptosis after spinal cord injury
AU - Kim, Jong Heon
AU - Kim, Sung Hoon
AU - Cho, Sung Rae
AU - Lee, Ji Yong
AU - Kim, Ji Hyun
AU - Baek, Ahreum
AU - Jung, Hong Sun
N1 - Publisher Copyright:
© 2016 by Korean Academy of Rehabilitation Medicine.
PY - 2016
Y1 - 2016
N2 - Objective To investigate alterations in the expression of the main regulators of neuronal survival and death related to astrocytes and neuronal cells in the brain in a mouse model of spinal cord injury (SCI). Methods Eight-week-old male imprinting control region mice (n=36; 30-35 g) were used in this study and randomly assigned to two groups: the naïve control group (n=18) and SCI group (n=18). The mice in both groups were randomly allocated to the following three time points: 3 days, 1 week, and 2 weeks (n=6 each). The expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), histone deacetylase 1 (HDAC1), and methyl-CpG-binding protein 2 (MeCP 2) in the brain were evaluated following thoracic contusive SCI. In addition, the number of neuronal cells in the motor cortex (M1 and M2 areas) and the number of astrocytes in the hippocampus were determined by immunohistochemistry. Results BDNF expression was significantly elevated at 2 weeks after injury (p=0.024). The GDNF level was significantly elevated at 3 days (p=0.042). The expression of HDAC1 was significantly elevated at 1 week (p=0.026). Following SCI, compared with the control the number of NeuN-positive cells in the M1 and M2 areas gradually and consistently decreased at 2 weeks after injury. In contrast, the number of astrocytes was significantly increased at 1 week (p=0.029). Conclusion These results demonstrate that the upregulation of BDNF, GDNF and HDAC1 might play on important role in brain reorganization after SCI.
AB - Objective To investigate alterations in the expression of the main regulators of neuronal survival and death related to astrocytes and neuronal cells in the brain in a mouse model of spinal cord injury (SCI). Methods Eight-week-old male imprinting control region mice (n=36; 30-35 g) were used in this study and randomly assigned to two groups: the naïve control group (n=18) and SCI group (n=18). The mice in both groups were randomly allocated to the following three time points: 3 days, 1 week, and 2 weeks (n=6 each). The expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), histone deacetylase 1 (HDAC1), and methyl-CpG-binding protein 2 (MeCP 2) in the brain were evaluated following thoracic contusive SCI. In addition, the number of neuronal cells in the motor cortex (M1 and M2 areas) and the number of astrocytes in the hippocampus were determined by immunohistochemistry. Results BDNF expression was significantly elevated at 2 weeks after injury (p=0.024). The GDNF level was significantly elevated at 3 days (p=0.042). The expression of HDAC1 was significantly elevated at 1 week (p=0.026). Following SCI, compared with the control the number of NeuN-positive cells in the M1 and M2 areas gradually and consistently decreased at 2 weeks after injury. In contrast, the number of astrocytes was significantly increased at 1 week (p=0.029). Conclusion These results demonstrate that the upregulation of BDNF, GDNF and HDAC1 might play on important role in brain reorganization after SCI.
UR - http://www.scopus.com/inward/record.url?scp=84984917608&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84984917608&partnerID=8YFLogxK
U2 - 10.5535/arm.2016.40.4.559
DO - 10.5535/arm.2016.40.4.559
M3 - Article
AN - SCOPUS:84984917608
SN - 2234-0645
VL - 40
SP - 559
EP - 567
JO - Annals of Rehabilitation Medicine
JF - Annals of Rehabilitation Medicine
IS - 4
ER -