The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced plasticity steels

Il Jeong Park, Kook Hyun Jeong, Jae Gil Jung, Chong Soo Lee, Young Kook Lee

Research output: Contribution to journalArticlepeer-review

105 Citations (Scopus)

Abstract

High Mn twinning-induced plasticity (TWIP) steels are attractive for high performance applications owing to their extraordinary ductility at a giga-graded tensile strength level. Hydrogen delayed fracture (HDF) came to the fore as a key issue to be solved for the application of these steels. Although it was found that Al addition improved the resistance to HDF, the reason was unclear. Therefore, in this study, the fracture surfaces of annealed and hydrogen-charged TWIP steels with different Al contents were examined after slow strain rate tensile tests. Diffusible hydrogen was measured by thermal desorption analysis. It found that the strong resistance to HDF was due to an α-Al 2O 3 layer formed below the (Fe 0.8Mn 0.2)O layer during the hydrogen charging in an aqueous solution prevented the hydrogen to permeate into specimens from the surface.

Original languageEnglish
Pages (from-to)9925-9932
Number of pages8
JournalInternational Journal of Hydrogen Energy
Volume37
Issue number12
DOIs
Publication statusPublished - 2012 Jun

Bibliographical note

Funding Information:
The authors are grateful for a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Commerce, Industry and Energy , Republic of Korea.

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced plasticity steels'. Together they form a unique fingerprint.

Cite this