The kechris–woodin rank is finer than the zalcwasser rank

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


For each differentiable function f on the unit circle, the Kechris Woodin rank measures the failure of continuity of the derivative function f' while the Zalcwasser rank measures how close the Fourier series of f is to being a uniformly convergent series. We show that the Kechris-Woodin rank is finer than the Zalcwasser rank. Roughly speaking, small ranks mean the function is well behaved and big ranks imply bad behavior. For each countable ordinal, we explicitly construct a continuous function with everywhere convergent Fourier series such that the Zalcwasser rank of the function is bigger than the ordinal.

Original languageEnglish
Pages (from-to)4471-4484
Number of pages14
JournalTransactions of the American Mathematical Society
Issue number11
Publication statusPublished - 1995 Nov

All Science Journal Classification (ASJC) codes

  • General Mathematics
  • Applied Mathematics


Dive into the research topics of 'The kechris–woodin rank is finer than the zalcwasser rank'. Together they form a unique fingerprint.

Cite this