The influence of ward ventilation on hospital cross infection by varying the location of supply and exhaust air diffuser using CFD

Taesub Lim, Jinkyun Cho, Byungseon Sean Kim

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The SARS virus began to appear and spread in North America and Southeast Asia in the early 2000's, infecting and harming many people. In the process of examining the causes for the virus, studies on the airborne pathogen SARS virus and the way it spread were carried out mainly in the medical field. In the field of architecture, studies were done on the diffusion of air pollutants in buildings using gases such as CO 2 , N 2 O, or SF 6 , but research on virus diffusion was limited. There were also explanations of only the diffusion process without accurate information and discussion on virus characteristics. The aim of this study is to analyze the physical characteristics of airborne virus, consider the possibility of using a coupled analysis model and tracer gas for analyzing virus diffusion in building space and, based on reports of how the infection spread in a hospital where SARS patients were discovered, analyze infection risk using tracer gas density and also diffusion patterns according to the location and volume of supply diffusers and exhaust grilles. This paper can provide standards and logical principles for evaluating various alternatives for making decisions on horizontal ward placement, air supply and exhaust installation and volumes in large hospitals.

Original languageEnglish
Pages (from-to)259-266
Number of pages8
JournalJournal of Asian Architecture and Building Engineering
Volume9
Issue number1
DOIs
Publication statusPublished - 2010 May 14

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Architecture
  • Cultural Studies
  • Building and Construction
  • Arts and Humanities (miscellaneous)

Fingerprint

Dive into the research topics of 'The influence of ward ventilation on hospital cross infection by varying the location of supply and exhaust air diffuser using CFD'. Together they form a unique fingerprint.

Cite this