Abstract
We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of 17 luminous supernovae (LSNe, having peak MV <-21) and compare them to a sample of 26,000 galaxies from a cross-match between the SDSS DR4 spectral catalog and GALEX interim release 1.1. We place the LSN hosts on the galaxy NUV-r versus Mr color-magnitude diagram (CMD) with the larger sample to illustrate how extreme they are. The LSN hosts appear to favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low-luminosity end. From the UV-optical photometry, we estimate the star formation history of the LSN hosts. The hosts have moderately low star formation rates (SFRs) and low stellar masses (M*) resulting in high specific star formation rates (sSFR). Compared with the larger sample, the LSN hosts occupy low-density regions of a diagram plotting sSFR versus M* in the area having higher sSFR and lower M*. This preference for low M*, high sSFR hosts implies that the LSNe are produced by an effect having to do with their local environment. The correlation of mass with metallicity suggests that perhaps wind-driven mass loss is the factor that prevents LSNe from arising in higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe (>100 M), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.
Original language | English |
---|---|
Journal | Astrophysical Journal |
Volume | 727 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2011 Jan 20 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science