The effects of the voglibose on non-alcoholic fatty liver disease in mice model

Jaehyun Bae, Ji Young Lee, Eugene Shin, Minyoung Lee, Yong ho Lee, Byung Wan Lee, Eun Seok Kang, Bong Soo Cha

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

The α-glucosidase inhibitor (α-GI) delays the intestinal absorption of glucose, which reduces postprandial hepatic glucose intake. This mechanism is considered to be effective in treating non-alcoholic fatty liver disease (NAFLD). Here, we investigated the effect of voglibose, an α-glucosidase inhibitor, on high-fat, high-fructose (HFHFr) diet-induced NAFLD models. Seven-week-old male C57BL/6J mice were randomly placed in a chow diet group or an HFHFr diet group. After 10 weeks, mice in the HFHFr group were randomly assigned to one of three groups: HFHFr diet with vehicle, HFHFr with voglibose, or HFHFr with pioglitazone. Each diet and treatment was continued for 10 weeks. The HFHFr diet induced severe NAFLD in terms of steatosis, hepatitis, and fibrosis. Administration of voglibose improved all aspects of NAFLD, comparable to those of pioglitazone, a positive control. In voglibose-treated mice, gene expressions of hepatic lipogenesis markers were significantly downregulated. In the in vitro experiment, reducing the influx of glucose into hepatocytes significantly reduced steatosis and de novo lipogenesis even in the presence of sufficient fructose and fat, demonstrating that the mechanism of voglibose could be effective in treating HFHFr diet-induced NAFLD. These results indicate that voglibose improves HFHFr diet-induced NAFLD by suppressing hepatic de novo lipogenesis.

Original languageEnglish
Article number13595
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'The effects of the voglibose on non-alcoholic fatty liver disease in mice model'. Together they form a unique fingerprint.

Cite this