The effect of vanadium precursors on the electrochemical performance of Li1.1V0.9O2 as an anode material for Li-ion batteries

Juhyeon Ahn, Si Hyoung Oh, Jong Hak Kim, Byung Won Cho, Hyung Sun Kim

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Recently, Li1.1V0.9O2 has been considered as one of the most promising anode materials for Li-ion batteries due to its high volumetric capacity at a relatively low intercalation potential. For a scalable and economical production of Li1.1V0.9O 2 anode material with a high electrochemical performance, however, the preparation of vanadium precursor with a good quality is of crucial importance. In this work, a high-purity V2O3 precursor was prepared through a thermal reduction of commercial V2O5 at 600 °C, which is far more cost-effective than V2O3. Li1.1V0.9O2 was synthesized by a simple solid-state reaction of Li2CO3, as well as V 2O3 at high temperature under a reducing atmosphere. In the electrochemical measurement, Li1.1V0.9O2 prepared using V2O3 from the thermal reduction of V 2O5 showed considerably higher specific capacity than the one using the commercial V2O3, maintaining a specific capacity of about 300 mAh g-1 even after 20 cycles at 0.1 C rate, although it showed a lower coulombic efficiency for the first cycle.

Original languageEnglish
Pages (from-to)390-395
Number of pages6
JournalJournal of Electroceramics
Volume32
Issue number4
DOIs
Publication statusPublished - 2014 Jun

Bibliographical note

Funding Information:
Acknowledgments This work was funded by “The Middle and Long-Term Technology Development Project” of the Ministry of Knowledge Economy of Korea.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'The effect of vanadium precursors on the electrochemical performance of Li1.1V0.9O2 as an anode material for Li-ion batteries'. Together they form a unique fingerprint.

Cite this