The cytoskeleton of digestive epithelia in health and disease

Nam On Ku, Xiangjun Zhou, Diana M. Toivola, M. Bishr Omary

Research output: Contribution to journalReview articlepeer-review

62 Citations (Scopus)


The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.

Original languageEnglish
Pages (from-to)G1108-G1137
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Issue number6 40-6
Publication statusPublished - 1999 Dec

All Science Journal Classification (ASJC) codes

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)


Dive into the research topics of 'The cytoskeleton of digestive epithelia in health and disease'. Together they form a unique fingerprint.

Cite this