The C-Domain of the NAC Transcription Factor ANAC019 Is Necessary for pH-Tuned DNA Binding through a Histidine Switch in the N-Domain

Mooseok Kang, Sangyeol Kim, Hyo Jung Kim, Pravesh Shrestha, Ji hye Yun, Bong Kwan Phee, Weontae Lee, Hong Gil Nam, Iksoo Chang

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The affinity of transcription factors (TFs) for their target DNA is a critical determinant of gene expression. Whether the DNA-binding domain (DBD) of TFs alone can regulate binding affinity to DNA is an important question for identifying the design principle of TFs. We studied ANAC019, a member of the NAC TF family of proteins in Arabidopsis, and found a well-conserved histidine switch located in its DBD, which regulates both homodimerization and transcriptional control of the TF through H135 protonation. We found that the removal of a C-terminal intrinsically disordered region (IDR) in the TF abolished the pH-dependent binding of the N-terminal DBD to DNA. We propose a mechanism in which long-range electrostatic interactions between DNA and the negatively charged C-terminal IDR turns on the pH dependency of the DNA-binding affinity of the N-terminal DBD. Kang et al. find a histidine switch in the DNA-binding N-domain of the transcription factor ANAC019 that regulates both pH-dependent homodimerization and DNA binding. They propose that long-range electrostatic interactions between DNA and the negatively charged C-terminal turns on the pH dependency of the DNA-binding affinity of the N-terminal DNA-binding domain.

Original languageEnglish
Pages (from-to)1141-1150
Number of pages10
JournalCell Reports
Volume22
Issue number5
DOIs
Publication statusPublished - 2018 Jan 30

Bibliographical note

Publisher Copyright:
© 2018 The Authors

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'The C-Domain of the NAC Transcription Factor ANAC019 Is Necessary for pH-Tuned DNA Binding through a Histidine Switch in the N-Domain'. Together they form a unique fingerprint.

Cite this