Abstract
Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L.), suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab) and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO) cells (CHO-obinutuzumab). Two forms (with or without an HDEL tag) were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.
Original language | English |
---|---|
Article number | e0191075 |
Journal | PloS one |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 Jan |
Bibliographical note
Funding Information:This work was supported by grants from the National Research Foundation of Korea, Project Nos. NRF-2013M3A9A9050574 to W.T.K. and NFR-2017R1A2B4010319 to J.Y.K. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was supported by grants from the National Research Foundation of Korea, Project Nos. NRF-2013M3A9A9050574 to W.T.K. and NFR-2017R1A2B4010319 to J.Y.K.
Publisher Copyright:
© 2018 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
All Science Journal Classification (ASJC) codes
- General