Abstract
In this paper we study the 0-1 inverse maximum stable set problem, denoted by I S{0, 1}. Given a graph and a fixed stable set, it is to delete the minimum number of vertices to make this stable set maximum in the new graph. We also consider I S{0, 1} against a specific algorithm such as G r e e d y and 2 o p t, aiming to delete the minimum number of vertices so that the algorithm selects the given stable set in the new graph; we denote them by I S{0, 1}, g r e e d y and I S{0, 1}, 2 o p t, respectively. Firstly, we show that they are NP-hard, even if the fixed stable set contains only one vertex. Secondly, we achieve an approximation ratio of 2 - Θ (frac(1, sqrt(l o g Δ))) for I S{0, 1}, 2 o p t. Thirdly, we study the tractability of I S{0, 1} for some classes of perfect graphs such as comparability, co-comparability and chordal graphs. Finally, we compare the hardness of I S{0, 1} and I S{0, 1}, 2 o p t for some other classes of graphs.
Original language | English |
---|---|
Pages (from-to) | 2501-2516 |
Number of pages | 16 |
Journal | Discrete Applied Mathematics |
Volume | 156 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2008 Jul 6 |
All Science Journal Classification (ASJC) codes
- Discrete Mathematics and Combinatorics
- Applied Mathematics