Abstract
Accurate term discrimination in information retrieval is essential for identifying important terms in specific documents. In addition to the widely known inverse document frequency (IDF) method, alternative approaches such as the residual inverse document frequency (RIDF) scheme have been introduced for term discrimination. However, existing methods’ performance is not unconditionally convincing. We propose a new collection frequency weighting scheme derived from the negative binomial distribution model of term occurrences. Factorial experiments were performed to examine potential interaction effect between collection frequency weight methods and term frequency weight methods according to the mean average precision and normalized discounted cumulative gain performance assessors. The results indicate that our proposed term discrimination method offers a significant gain in accuracy as compared to the IDF and RIDF scheme. This finding is reinforced by the fact that the results show no interaction effects among factors.
Original language | English |
---|---|
Pages (from-to) | 370-379 |
Number of pages | 10 |
Journal | Information Processing and Management |
Volume | 54 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2018 May 1 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) ( 2016R1A2A1A05005270 ).
Publisher Copyright:
© 2018 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Information Systems
- Media Technology
- Computer Science Applications
- Management Science and Operations Research
- Library and Information Sciences