TY - JOUR
T1 - Tate conjecture for some abelian surfaces over totally real or CM number fields
AU - Virdol, Cristian
PY - 2015/7/1
Y1 - 2015/7/1
N2 - In this paper we prove Tate conjecture for abelian surfaces of the type ResK/F E where E is an elliptic curve defined over a totally real or CM number field K, and F is a subfield of K such that [K: F] = 2.
AB - In this paper we prove Tate conjecture for abelian surfaces of the type ResK/F E where E is an elliptic curve defined over a totally real or CM number field K, and F is a subfield of K such that [K: F] = 2.
UR - http://www.scopus.com/inward/record.url?scp=84934324438&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84934324438&partnerID=8YFLogxK
U2 - 10.7169/facm/2015.52.1.4
DO - 10.7169/facm/2015.52.1.4
M3 - Article
AN - SCOPUS:84934324438
SN - 0208-6573
VL - 52
SP - 57
EP - 63
JO - Functiones et Approximatio, Commentarii Mathematici
JF - Functiones et Approximatio, Commentarii Mathematici
IS - 1
ER -