Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

Tae Heon Hwang, Jin Bum Kim, Da Som Yang, Yong Il Park, Wonhyoung Ryu

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 m. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro.

Original languageEnglish
Article number035012
JournalJournal of Micromechanics and Microengineering
Issue number3
Publication statusPublished - 2013 Mar

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems'. Together they form a unique fingerprint.

Cite this