Tailoring the Time-Averaged Structure for Polarization-Sensitive Chiral Perovskites

Chan Uk Lee, Sunihl Ma, Jihoon Ahn, Jihoon Kyhm, Jeiwan Tan, Hyungsoo Lee, Gyumin Jang, Young Sun Park, Juwon Yun, Junwoo Lee, Jaehyun Son, Ji Sang Park, Jooho Moon

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W-1.

Original languageEnglish
Pages (from-to)16020-16033
Number of pages14
JournalJournal of the American Chemical Society
Issue number35
Publication statusPublished - 2022 Sept 7

Bibliographical note

Publisher Copyright:
© 2022 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Tailoring the Time-Averaged Structure for Polarization-Sensitive Chiral Perovskites'. Together they form a unique fingerprint.

Cite this