Abstract
Low-temperature operation is necessary for next-generation solid oxide fuel cells due to the wide variety of their applications. However, significant increases in the fuel cell losses appear in the low-temperature solid oxide fuel cells, which reduce the cell performance. To overcome this problem, here we report Gd0.1Ce0.9O1.95-based low-temperature solid oxide fuel cells with nanocomposite anode functional layers, thin electrolytes and core/shell fibrestructured Ba0.5Sr 0.5Co0.8Fe0.2O3δd-Gd 0.1Ce0.9O1.95 cathodes. In particular, the report describes the use of the advanced electrospinning and Pechini process in the preparation of the core/shell-fibre-structured cathodes. The fuel cells show a very high performance of 2Wcm-2 at 550 °C in hydrogen, and are stable for 300 h even under the high current density of 1Acm-2. Hence, the results suggest that stable and high-performance solid oxide fuel cells at low temperatures can be achieved by modifying the microstructures of solid oxide fuel cell components.
Original language | English |
---|---|
Article number | 4045 |
Journal | Nature communications |
Volume | 5 |
DOIs | |
Publication status | Published - 2014 Jun 4 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2012M1A2A2671711). We are grateful to LTC Co., LTD for technical assistance.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)