Abstract
Carbon configuration is a critical factor in determining the electrical, tribological, and mechanical properties of carbon films. In this work, we synthesized carbon films on a silicate glass by sputtering a graphite target in an Ar atmosphere while varying the DC sputtering power. Using Raman spectroscopy and photoemission analysis, we found that the carbon films produced at low sputtering power consisted mainly of sp3 bonds, while sp2 carbon ordering became dominant as the sputtering power increased. The sp2/sp3 ratio of the carbon film controlled by the sputtering power is associated with two competing carbon deposition mechanisms: (1) collision between the incoming carbon ions and surface carbon atoms at low power (sub-plantation model) and (2) sp3-to-sp2 rehybridization caused by excessive kinetic energy of the incoming carbon ions at high power (thermal relaxation). As the sputtering power increased, the friction, adhesion, and energy dissipation decreased, despite negligible topographical variations, while the conductivity rapidly increased. We fabricated a triboelectric nanogenerator with high durability by utilizing the low friction properties of the sputtered carbon films. Our results show a straightforward and effective way to control the properties of carbon films, which can be used as promising coating films for frictionless protection.
Original language | English |
---|---|
Pages (from-to) | 1771-1779 |
Number of pages | 9 |
Journal | ACS Applied Electronic Materials |
Volume | 3 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 Apr 27 |
Bibliographical note
Funding Information:This work was supported by LG Hausys, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2016M3A7B4910940), and NRF grant funded by the Korean government (2018M3D1A1058793, 2020R1A2C1006987, and 2020R1A4A1017915).
Publisher Copyright:
© 2021 The Authors. Published by American Chemical Society.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Materials Chemistry
- Electrochemistry