Abstract
Orange-red fluorescent molecules are promising materials for use in a new generation of displays, light sources, and chemosensors because conventional red-emitters have lower fluorescence quantum efficiencies. In this work, a set of orange-emitting fused imidazole series 2-(7-(4-fluorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-F), 2-(7-(4-chlorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Cl), and 2-(7-(4-bromophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Br) have been synthesized via multicomponent reaction method with high yield. Synthesized molecules were fully characterized by 1H NMR, 13C NMR, GC-Mass, UV–vis. absorption, PL, and TGA-DSC. The compounds AHPI-F, AHPI-Cl, AHPI-Br showed large Stokes' shifted emission due to excited-state intramolecular proton transfer (ESIPT) process, and they effectively formed large single crystals. The crystal structure of each compound was identified by X-ray crystallographic analysis. To elucidate the photophysical properties of the molecule, theoretical calculation were performed by density functional theory (DFT) with B3LYP 6-31G(d,p) basis sets using the identified molecular conformations from X-ray analysis. Calculated electronic properties including HOMO-LUMO levels were compared with the experimental results. As a result of ESIPT process, extended conjugation length through acenaphto[1,2-d]imidazole, and charge transfer characteristics by the introduction of halogen atoms, all of the materials showed orange ESIPT emission with no spatial overlap between absorption (λmax,abs = 325 nm) and emission (λmax,ems = 578 nm).
Original language | English |
---|---|
Pages (from-to) | 43-49 |
Number of pages | 7 |
Journal | Journal of Molecular Structure |
Volume | 1137 |
DOIs | |
Publication status | Published - 2017 Jun 5 |
Bibliographical note
Funding Information:This work was supported by University-Industry Cooperation Foundation, Kongju National University, South Korea.
Publisher Copyright:
© 2017 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Spectroscopy
- Organic Chemistry
- Inorganic Chemistry