Abstract
The synthesis and the characterization of crosslinked ABC triblock copolymer, i.e. polystyrene-b-poly (hydroxyethyl methacrylate)-b-poly(styrene sulfonic acid), (PS-b-PHEMA-b-PSSA) is reported. PS-b-PHEMA-b-PSSA triblock copolymer at 20:10:70 wt% was sequentially synthesized via atom transfer radical polymerization (ATRP). The middle block was crosslinked by sulfosuccinic acid (SA) via the esterification reaction between -OH of PHEMA and -COOH of SA, as demonstrated by FTIR spectroscopy. As increasing amounts of SA, ion exchange capacity (IEC) continuously increased from 2.13 to 2.82 meq/g but water uptake decreased from 181.8 to 82.7%, resulting from the competitive effect between crosslinked structure and the increasing concentration of sulfonic acid group. A maximum proton conductivity of crosslinked triblock copolymer membrane at room temperature reached up to 0.198 S/cm at 3.8 w% of SA, which was more than two-fold higher than that of Nation 117(0.08 S/cm). Transmission electron microscopy (TEM) analysis clearly showed that the PS-b-PHEMA-b-PSSA triblock copolymer is microphase-separated with a nanometer range and well developed to provide the connectivity of ionic PSSA domains. The membranes exhibited the good thermal properties up to 250 °C presumably resulting from the microphase-separated and crosslinked structure of the membranes, as revealed by thermal gravimetric analysis (TGA).
Original language | English |
---|---|
Pages (from-to) | 325-331 |
Number of pages | 7 |
Journal | Macromolecular Research |
Volume | 17 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2009 May |
All Science Journal Classification (ASJC) codes
- Chemical Engineering(all)
- Organic Chemistry
- Polymers and Plastics
- Materials Chemistry