TY - JOUR
T1 - Synthesis and characterization of PEDOT
T2 - P(SS-co-VTMS) with hydrophobic properties and excellent thermal stability
AU - Cho, Wonseok
AU - Im, Soeun
AU - Kim, Seyul
AU - Kim, Soyeon
AU - Kim, Jung Hyun
N1 - Publisher Copyright:
© 2016 by the authors.
PY - 2016
Y1 - 2016
N2 - Hydrophobic and comparatively thermally-stable poly(3,4-ethylenedioxythiophene), i.e., poly(styrene sulfonate-co-vinyltrimethoxysilane) (PEDOT: P(SS-co-VTMS)) copolymer was successfully synthesized via the introduction of silane coupling agent into the PSS main chain to form P(SS-co-VTMS) copolymers. PSS and P(SS-co-VMTS) copolymers were successfully synthesized via radical solution polymerization, and PEDOT: P(SS-co-VTMS) was synthesized via Fe+-catalyzed oxidative polymerization. The characterization of PEDOT:P(SS-co-VTMS) was performed through an analysis of Fourier transform infrared spectroscopy (FTIR) results, water contact angle and optical images. The electrical properties of conductive PEDOT:P(SS-co-VTMS) thin films were evaluated by studying the influence of the VTMS content on the electrical and physical properties. The conductivity of PEDOT:P(SS-co-VTMS) decreased with an increase in the VTMS content, but was close to that of the PEDOT:PSS, 235.9 S. cm-1. The introduction of VTMS into the PSS copolymer improved the mechanical properties and thermal stability and increased the hydrophobicity. The thermal stability test at a temperature over 240 °C indicated that the sheet resistance of PEDOT:PSS increased by 3,012%. The sheet resistance of PEDOT:P(SS-co-VTMS), on the other hand, only increased by 480%. The stability of PEDOT:P(SS-co-VTMS) was six-times higher than that of the reference PEDOT:PSS.
AB - Hydrophobic and comparatively thermally-stable poly(3,4-ethylenedioxythiophene), i.e., poly(styrene sulfonate-co-vinyltrimethoxysilane) (PEDOT: P(SS-co-VTMS)) copolymer was successfully synthesized via the introduction of silane coupling agent into the PSS main chain to form P(SS-co-VTMS) copolymers. PSS and P(SS-co-VMTS) copolymers were successfully synthesized via radical solution polymerization, and PEDOT: P(SS-co-VTMS) was synthesized via Fe+-catalyzed oxidative polymerization. The characterization of PEDOT:P(SS-co-VTMS) was performed through an analysis of Fourier transform infrared spectroscopy (FTIR) results, water contact angle and optical images. The electrical properties of conductive PEDOT:P(SS-co-VTMS) thin films were evaluated by studying the influence of the VTMS content on the electrical and physical properties. The conductivity of PEDOT:P(SS-co-VTMS) decreased with an increase in the VTMS content, but was close to that of the PEDOT:PSS, 235.9 S. cm-1. The introduction of VTMS into the PSS copolymer improved the mechanical properties and thermal stability and increased the hydrophobicity. The thermal stability test at a temperature over 240 °C indicated that the sheet resistance of PEDOT:PSS increased by 3,012%. The sheet resistance of PEDOT:P(SS-co-VTMS), on the other hand, only increased by 480%. The stability of PEDOT:P(SS-co-VTMS) was six-times higher than that of the reference PEDOT:PSS.
KW - Conducting polymer
KW - PEDOT: PSS
KW - PSS copolymer
UR - http://www.scopus.com/inward/record.url?scp=84969921673&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969921673&partnerID=8YFLogxK
U2 - 10.3390/polym8050189
DO - 10.3390/polym8050189
M3 - Article
AN - SCOPUS:84969921673
SN - 2073-4360
VL - 8
JO - Polymers
JF - Polymers
IS - 5
M1 - 189
ER -