Synthesis and characterization of crosslinked triblock copolymers for fuel cells

Do Kyoung Lee, Kyung Ju Lee, Yong Woo Kim, Jong Hak Kim

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Two kinds of ABC triblock copolymer, i.e. polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid), (PS-b-PHEA-b-PSSA) at 23:23:54 wt. ratio and polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(sulfopropyl methacrylate), (PS-b-PHEA-b-PSPMA) at 17:17:66 wt. ratio were sequentially synthesized via atom transfer radical polymerization (ATRP) for polymer electrolyte membranes fuel cells (PEMFC). However, the synthesis of polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(2-methyl-2-propene-1-sulfonic acid), (PS-b-PHEA-b-PMPSA) was not successful. The middle PHEA block was crosslinked by sulfosuccinic acid (SA) via the esterification reaction between -OH of PHEA and -COOH of SA, as revealed by FT-IR spectroscopy. As increasing amounts of SA, ion exchange capacity (IEC) continuously increased for both membranes but water uptake decreased, presumably because of the competitive effect between crosslinked structure and the increasing concentrations of sulfonic acid group. As a result, the proton conductivities of crosslinked triblock copolymer membranes increased up to 0.049 and 0.037 S/cm at room temperature, for PS-b-PHEA-b-PSPMA and PS-b-PHEA-b-PSSA, respectively, with increasing SA weight fraction up to 0.038, above which they monotonously decreased. It was also found that the IEC value, water uptake and proton conductivity of PS-b-PHEA-b-PSPMA membranes were always higher than those of PS-b-PHEA-b-PSSA membranes, mostly due to higher concentrations of sulfonic acid groups in the former.

Original languageEnglish
Pages (from-to)104-112
Number of pages9
JournalDesalination
Volume233
Issue number1-3
DOIs
Publication statusPublished - 2008 Dec 15

Bibliographical note

Funding Information:
This work is outcome of the fostering project of the Specialized Graduate School of Hydrogen & Fuel Cell supported financially by the Ministry of Commerce, Industry and Energy (MOCIE).

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Science(all)
  • Water Science and Technology
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Synthesis and characterization of crosslinked triblock copolymers for fuel cells'. Together they form a unique fingerprint.

Cite this