Abstract
The increasing demand for disposable textiles for multi-cleansing purposes has led to an uncontrollable accumulation of macro- and microdebris in water bodies, resulting in major environmental disruptions and a threat to ecosystems. Considering the emerging nature of this type of contamination, there is still no current treatment to tackle this environmental problem. Here, self-propelled bismuth tungstate microrobots that can actively move under light irradiation, swarm, and destroy disposable textiles through oxidative pathways are presented. Upon sun-like illumination, these micromachines attack and degrade both the intertwined network of natural/synthetic textiles and their organic ingredients that are subsequently released into the water. The high efficiency arises from the enhanced intimate contact between the self-propelled microrobots and the surface of the textiles. This work provides a unique strategy to treat emerging solid waste contamination in water bodies at mild conditions by combining photoactivated microrobots, collective behavior, and photocatalysis.
Original language | English |
---|---|
Article number | 2007073 |
Journal | Advanced Functional Materials |
Volume | 30 |
Issue number | 51 |
DOIs | |
Publication status | Published - 2020 Dec 15 |
Bibliographical note
Funding Information:This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). The authors thank J. Šturala and B. Kherzi for aid with the TGA and GC measurements, respectively.
Publisher Copyright:
© 2020 Wiley-VCH GmbH
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics