Abstract
Direct thermal imprinting of nanostructures on glass substrates is reliable when manufacturing net-shaped glass devices with various surface functions. However, several problems are recognized, including a long thermal cycle, tedious optimization, difficulties in ensuring high level replication fidelity, and unnecessary thermal deformation of the glass substrate. Here, we describe a more sustainable and energy efficient method for direct thermal imprinting of nanostructures onto glass substrates; we use silicon mold transparent to infrared between 2.5 and 25 lm in wavelength combined with CO2 laser scanning irradiation. The glass strongly absorbed the 10.6 lm wavelength irradiation, triggering substantial heating of a thin layer on the glass surface, which significantly enhanced the filling of pressed glass material into nanostructured silicon mold cavities. For comparison, we conducted conventional direct glass thermal imprinting experiments, further emphasizing the advantages of our new method, which outperformed conventional methods. The thermal mass cycle was shorter and the imprint pattern quality and yield, higher.
Original language | English |
---|---|
Article number | 121005 |
Journal | Journal of Manufacturing Science and Engineering, Transactions of the ASME |
Volume | 140 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2018 Dec 1 |
Bibliographical note
Funding Information:• National Research Foundation of Korea (NRF). • Ministry of Science ICT and Future Planning, Korean Gov-ernment (MSIP) (Grant No. 2015R1A5A1037668).
Publisher Copyright:
© 2018 by ASME.
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Mechanical Engineering
- Computer Science Applications
- Industrial and Manufacturing Engineering