Susceptibility assessments of landslides in Hulu Kelang area using a geographic information system-based prediction model

Sangseom Jeong, Azman Kassim, Moonhyun Hong, Nader Saadatkhah

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

This study was conducted to estimate the susceptibility of landslides on a test site in Malaysia (Hulu Kelang area). A Geographic Information system (GIS)-based physical model named YS-Slope, which integrates a mechanistic infinite slope stability method and the geo-hydrological model was applied to calculate the safety factor of the test site. Input data, slopes, soil-depth, elevations, soil properties and plant covers were constructed as GIS datasets. The factor of safety of shallow landslides along the wetting front and deep-seated landslides at the bottom of the groundwater were estimated to compare with the analysis results of the existing model and actual landslides in 2008. According to the results of the study, shallow landslides mainly occurred in the central area which has many historical landslides, while deep-seated landslides were predominant in the east side of the study area. A ROC analysis was conducted and it is shown that the prediction result at the end of the northeast monsoon for shallow landslides showed relatively high accuracy compared with other predictions.

Original languageEnglish
Article number2941
JournalSustainability (Switzerland)
Volume10
Issue number8
DOIs
Publication statusPublished - 2018 Aug 19

Bibliographical note

Funding Information:
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2011-0030040), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A08025348) and the Graduate School of YONSEI University Research Scholarship Grants in 2017

Funding Information:
Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2011-0030040), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A08025348) and the Graduate School of YONSEI University Research Scholarship Grants in 2017.

Publisher Copyright:
© 2018 by the authors.

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Susceptibility assessments of landslides in Hulu Kelang area using a geographic information system-based prediction model'. Together they form a unique fingerprint.

Cite this